Some Banach space characterizations of the Δ_2 condition.

J. Alexopoulos, D. Bárcenas[†] and V. Echandía

May 5, 2003

Abstract

In [1] J. Alexopoulos has shown that if $\Phi \in \Delta_2$ and if its complement Ψ satisfies $\lim_{t\to\infty} \frac{\Psi(ct)}{\Psi(t)} = \infty$ for some c > 0 then a bounded set $K \subset L_{\Phi}$ is relatively weakly compact if and only if K has equi-absolutely continuous norms. Even though all such Φ fail the ∇_2 condition we do not know whether the theorem is applicable to all $\Phi \in \Delta_2 \setminus \nabla_2$. In this paper we make some progress towards a generalization of this theorem. In particular we show that an N-function $\Phi \notin \nabla_2$ if and only if every weakly null sequence $(c_n \chi_{E_n})$ in $E^{\Phi}(\mu)$ has equi-absolutely continuous norms. Other characterizations of the Δ_2 condition are given.

Mathematics subject classification (2000): 46E30 Key Words: Convex functions, Orlicz spaces

1 Introduction and background

Throughout this discussion (Ω, Σ, μ) is a non-atomic, separable probability space. We begin by summarizing the necessary facts from the theory of Orlicz spaces. For a detailed account, the reader could consult chapters one and two in [5] or [7].

Definition 1.1 A function Φ is an N-function if and only if Φ is continuous, even and convex satisfying

- 1. $\lim_{x \to 0} \frac{\Phi(x)}{x} = 0;$
- 2. $\lim_{x \to \infty} \frac{\Phi(x)}{x} = \infty;$
- 3. $\Phi(x) > 0$ if x > 0.

^{*}The first author would like to express his gratitude for the financial support and hospitality of Universidad Central de Venezuela, Caracas-Venezuela and Universidad de Los Andes, Merida-Venezuela, during the summer of 2002.

 $^{^\}dagger Supported$ by CDCHT of ULA under project C 1123-02-05B.

Definition 1.2 For an N-function Φ define $\Psi(x) = \sup\{t|x| - \Phi(t) : t \ge 0\}$. Then Ψ is an N-function and it is called the complement of Φ .

Observe that Φ is the complement of its complement Ψ .

Definition 1.3 Two N-functions Φ and F are called equivalent if there are positive constants k_1 , k_2 and x_0 so that

$$F(k_2x) \le \Phi(x) \le F(k_2x)$$
 for all $x \ge x_0$.

Given an N-function Φ , the corresponding space of Φ -integrable functions is defined as follows:

Definition 1.4 For an N-function Φ and a measurable f define

$$\mathbf{\Phi}(f) = \int_{\Omega} \Phi(f) d\mu.$$

If Ψ denotes the complement of Φ let

$$L^{\Phi} = \left\{ f \text{ measurable} : \left| \int_{\Omega} fg d\mu \right| < \infty, \ \forall g \text{ with } \Psi(g) < \infty \right\}$$

The collection L^{Φ} is then a linear space. For $f \in L^{\Phi}$ define

$$\|f\|_{\Phi} = \sup\left\{\left|\int_{\Omega} fg d\mu\right|: \Psi(g) \leq 1\right\}$$

Then $(L^{\Phi}, \|\cdot\|_{\Phi})$ is a Banach space, called an Orlicz space. Moreover, letting $\|f\|_{(\Phi)} = \inf \left\{ k > 0 : \Phi\left(\frac{f}{k}\right) \leq 1 \right\}$ be the Minkowski functional associated with the convex set $\{f \in L^{\Phi} : \Phi(f) \leq 1\}$, we have that $\|\cdot\|_{(\Phi)}$ is an equivalent norm on L^{Φ} , called the Luxemburg norm. Indeed, $\|f\|_{(\Phi)} \leq \|f\|_{\Phi} \leq 2\|f\|_{(\Phi)}$, for all $f \in L^{\Phi}$.

Theorem 1.5 Let Φ be an N-function and let E^{Φ} be the closure of the bounded functions in L^{Φ} . Then the conjugate space of $(E^{\Phi}, \|\cdot\|_{(\Phi)})$ is $(L^{\Psi}, \|\cdot\|_{\Psi})$, where Ψ is the complement of Φ .

Definition 1.6 An N-function Φ is said to satisfy the Δ_2 condition $(\Phi \in \Delta_2)$ if $\limsup_{x\to\infty} \frac{\Phi(2x)}{\Phi(x)} < \infty$. That is, there is a K > 0 so that $\Phi(2x) \leq K\Phi(x)$ for large values of x. If the complement Ψ of Φ satisfies the Δ_2 condition then we say that Φ satisfies the ∇_2 condition $(\Phi \in \nabla_2)$.

Definition 1.7 We say that a collection $\mathcal{K} \subset L^{\Phi}$ has equi-absolutely continuous norms if and only if it is norm bounded and $\forall \varepsilon > 0 \exists \delta > 0$ so that $\sup\{\|\chi_E f\|_{\Phi} : f \in \mathcal{K}\} < \varepsilon$ whenever $\mu(E) < \delta$.

Theorem 1.8 Let Φ be an N-function and Ψ be its complement. Then the following statements are equivalent:

1.
$$L^{\Phi} = E^{\Phi}$$

- 2. $L^{\Phi} = \{ f \text{ measurable} : \Phi(f) < \infty \}.$
- 3. The dual of $(L^{\Phi}, \|\cdot\|_{(\Phi)})$ is $(L^{\Psi}, \|\cdot\|_{\Psi})$.
- 4. $\forall f \in L^{\Phi}, \{f\}$ has equi-absolutely continuous norms.
- 5. $\Phi \in \Delta_2$.

In section 2 we develop criteria for an N-function Φ to satisfy the ∇_2 condition. Specifically in theorem 2.3 we show that An N-function $\Phi \notin \nabla_2$ if and only if every weakly null sequence $(c_n \chi_{E_n})$ in $L^{\Phi}(\mu)$ has equi-absolutely continuous norms.

In section 3 we proceed to establish that if an N-function Φ does not satisfy the Δ_2 condition then the space E^{Φ} is " c_0 -rich" and as a result, there are weakly null sequences in E^{Φ} (even disjointly supported) that fail to have equi-absolutely continuous norms. In particular in corollary 3.4 we show that if $\Phi \notin \Delta_2$ then there is a weakly null sequence $(f_n) \subset E^{\Phi}$ that fails to have equi-absolutely continuous norms.

Finally in section 4 we close with some remarks relating relative weak compactness in Orlicz spaces to equi-absolute continuity of norms, and the presence of c_0 in $E^{\Phi}(\mu)$.

2 A characterization of the ∇_2 condition

We begin with a lemma which takes advantage of the non-atomic nature of the measure to select disjoint sets of precise measures:

Lemma 2.1 Suppose that $\mathcal{K} \subset E^{\Phi}(\mu)$ does not have equi-absolutely continuous norms. Then $\exists \varepsilon_0 > 0$ so that for every positive null sequence (a_n) there is a subsequence (n_k) of the positive integers, a sequence $(f_k) \subset \mathcal{K}$ and a sequence $(A_k) \subset \Sigma$ of pairwise disjoint sets so that $\mu(A_k) = a_{n_k}$ and $\|f_k \chi_{A_k}\| \ge \varepsilon_0$.

Proof: Since \mathcal{K} does not have equi-absolutely continuous norms, $\exists \eta_0 > 0$ so that $\forall \delta > 0$ there is $E_{\delta} \in \Sigma$ and $f \in \mathcal{K}$ so that $||f\chi_{E_{\delta}}|| \geq \eta_0$. Let $\varepsilon_0 = \frac{\eta_0}{2}$ and let (a_n) be any positive null sequence.

<u>Step 1:</u> Let $n_1 = 1$ and choose $E_1 \in \Sigma$ with $\mu(E_1) = a_{n_1}$ and $f_1 \in \mathcal{K}$ with $||f_1\chi_{E_1}|| \ge \eta_0$. Now f_1 has continuous norm and thus there is a $\delta_1 > 0$ so that if $\mu(E) < \delta_1$ then $||f_1\chi_E|| < \frac{\eta_0}{2}$. Enlarge E_1 by adding a set of measure δ_1 and let the new set be denoted by E_1^+ . That is, $E_1 \subset E_1^+$ and $\mu(E_1^+) = a_{n_1} + \delta_1$. Notice that if $A \subset E_1^+$ with $\mu(A) \ge a_{n_1}$ then $\mu(E_1^+ \setminus A) \le \delta_1$ and so

$$\frac{\eta_0}{2} > \left\| f_1 \chi_{E_1^+ \setminus A} \right\| \ge \| f_1 \chi_{E_1} \| - \| f_1 \chi_A \| \ge \eta_0 - \| f_1 \chi_A \|.$$

Hence $||f_1\chi_A|| > \frac{\eta_0}{2} = \varepsilon_0$.

Step 2: Choose $n_2 > n_1$ with $a_{n_2} < \frac{\delta_1}{4}$ and choose $E_2 \in \Sigma$ with $\mu(E_2) = a_{n_2}$ and $f_2 \in \mathcal{K}$ with $||f_2\chi_{E_2}|| \ge \eta_0$. Now f_2 has continuous norm and thus there is a $0 < \delta_2 < \frac{\delta_1}{4}$ so that if $\mu(E) < \delta_2$ then $||f_2\chi_E|| < \frac{\eta_0}{2}$. Enlarge E_2 by adding a set of measure δ_2 to obtain $E_2 \subset E_2^+$ and $\mu(E_2^+) = a_{n_2} + \delta_2$. Again, if $A \subset E_2^+$ with $\mu(A) \ge a_{n_2}$ then $\mu(E_2^+ \setminus A) \le \delta_2$ and so

$$\frac{\eta_0}{2} > \left\| f_2 \chi_{E_2^+ \setminus A} \right\| \ge \| f_2 \chi_{E_2} \| - \| f_2 \chi_A \| \ge \eta_0 - \| f_2 \chi_A \|.$$

Hence $||f_2\chi_A|| > \frac{\eta_0}{2} = \varepsilon_0.$

Inductive step: Continue inductively and choose $n_{k+1} > n_k$ with $a_{n_{k+1}} < \frac{\delta_k}{4}$, $E_{k+1} \in \Sigma$ with $\mu(E_{k+1}) = a_{n_{k+1}}$ and $f_{k+1} \in \mathcal{K}$ with $\|f_{k+1}\chi_{E_{k+1}}\| \ge \eta_0$. Since f_{k+1} has continuous norm, there is a $0 < \delta_{k+1} < \frac{\delta_k}{4}$ so that if $\mu(E) < \delta_{k+1}$ then $\|f_{k+1}\chi_E\| < \frac{\eta_0}{2}$. Enlarge E_{k+1} by adding a set of measure δ_{k+1} to obtain $E_{k+1} \subset E_{k+1}^+$ and $\mu(E_{k+1}^+) = a_{n_{k+1}} + \delta_{k+1}$. Again, if $A \subset E_{k+1}^+$ with $\mu(A) \ge a_{n_{k+1}}$ then $\mu(E_{k+1}^+ \setminus A) \le \delta_{k+1}$ and so

$$\frac{\eta_0}{2} > \left\| f_{k+1} \chi_{E_{k+1}^+ \setminus A} \right\| \ge \left\| f_{k+1} \chi_{E_{k+1}} \right\| - \left\| f_{k+1} \chi_A \right\| \ge \eta_0 - \left\| f_{k+1} \chi_A \right\|.$$

Hence $||f_{k+1}\chi_A|| > \frac{\eta_0}{2} = \varepsilon_0.$

For each k, let $B_k = E_k^+ \setminus \bigcup_{j=k+1}^{\infty} E_j^+$. Then the B_k 's are pairwise disjoint. Furthermore

$$\mu(B_k) \ge \mu(E_k^+) - \sum_{j=k+1}^{\infty} \mu(E_j^+)$$
$$= a_{n_k} + \delta_k - \sum_{j=k+1}^{\infty} (a_{n_j} + \delta_j)$$
$$\ge a_{n_k} + \delta_k - \sum_{j=k}^{\infty} \frac{2\delta_k}{4^{j-k+1}}$$
$$= a_{n_k} + \delta_k - 2\delta_k \sum_{j=1}^{\infty} \frac{1}{4^j}$$
$$= a_{n_k} + \delta_k - \frac{2}{3}\delta_k$$
$$> a_{n_k}.$$

Now choose any measurable $A_k \subset B_k$ with $\mu(A_k) = a_{n_k}$. Then $||f_k \chi_{A_k}|| > \varepsilon_0$ and so the lemma is established.

We next present a "Rosenthal's lemma" (see [3, pp.82]) type of result which can be found in [1].

Lemma 2.2 Let X be a Banach space. Suppose that $(x_n) \subset X$ is weakly null and $(x_n^*) \subset X^*$ is weak^{*} null. Then for each $\varepsilon > 0$ there is a subsequence (n_k) of the positive integers, so that, for each positive integer k we have

$$\sum_{j\neq k} \left| \left\langle x_{n_j}^*, x_{n_k} \right\rangle \right| < \varepsilon.$$

Proof: Let $\varepsilon > 0$. Let $n_1 = 1$. Since $x_n^* \xrightarrow{\text{weak}^*} 0$ there is an infinite subset A_1 of the positive integers so that $\sum_{j \in A_1} |\langle x_j^*, x_{n_1} \rangle| < \frac{\varepsilon}{2}$. Since $x_n \to 0$ weakly and since A_1 is infinite, we can find $n_2 > n_1$ with $n_2 \in A_1$,

so that $|\langle x_{n_1}^*, x_{n_2} \rangle| < \frac{\varepsilon}{2}$. Similarly there is an infinite subset A_2 of A_1 so that $\sum_{j \in A_2} |\langle x_j^*, x_{n_2} \rangle| < \frac{\varepsilon}{2}$. Again choose $n_3 > n_2$ with $n_3 \in A_2$ so that $|\langle x_{n_1}^*, x_{n_3} \rangle| < \frac{\varepsilon}{4}$ and $|\langle x_{n_2}^*, x_{n_3} \rangle| < \frac{\varepsilon}{4}$. There is an infinite subset A_3 of A_2 so that $\sum_{j \in A_3} |\langle x_j^*, x_{n_3} \rangle| < \frac{\varepsilon}{2}$. Choose $n_4 > n_3$ with $n_4 \in A_3$ so that $|\langle x_{n_i}^*, x_{n_4} \rangle| < \frac{\varepsilon}{6}$ for i = 1, 2, 3. Continue inductively to construct a sequence of infinite subsets of the positive integers, $A_1 \supset A_2 \cdots \supset A_k \supset \cdots$ and a sequence $n_1 < n_2 < \cdots$ of positive integers satisfying

- 1. $n_{k+1} \in A_k$ for all k.
- 2. $\sum_{j \in A_k} \left| \left\langle x_j^*, x_{n_{k+1}} \right\rangle \right| < \frac{\varepsilon}{2}$ for all k.
- 3. $\left|\left\langle x_{j}^{*}, x_{n_{k+1}}\right\rangle\right| < \frac{\varepsilon}{2k}$ for all k and for $j = 1, 2, \dots, k$.

Now for fixed positive integer k we have

$$\sum_{j \neq k} \left| \left\langle x_{n_j}^*, x_{n_k} \right\rangle \right| = \sum_{j=1}^{k-1} \left| \left\langle x_{n_j}^*, x_{n_k} \right\rangle \right| + \sum_{j=k+1}^{\infty} \left| \left\langle x_{n_j}^*, x_{n_k} \right\rangle \right|$$
$$< \frac{\varepsilon}{2(k-1)} (k-1) + \sum_{j \in A_k} \left| \left\langle x_{n_j}^*, x_{n_k} \right\rangle \right|$$
$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

And so we are done.

Now we are ready for our main result.

Theorem 2.3 An N-function $\Phi \notin \nabla_2$ if and only if every weakly null sequence $(c_n \chi_{E_n})$ in $L^{\Phi}(\mu)$ has equi-absolutely continuous norms.

Proof: For the forward direction suppose that $\Phi \notin \nabla_2$ and assert that there is a weakly null sequence $(f_n) = (c_n \chi_{E_n}) \subset E^{\Phi}$ that fails to have equi-absolutely continuous norms. Use lemma 2.1 to find a sequence of pairwise disjoint measurable sets (B_n) so that $(c_n \chi_{E_n \cap B_n})$ still fails to have equi-absolutely continuous norms. Since the complement Ψ of Φ does not satisfy the Δ_2 condition, there is a sequence of numbers (s_n) with $s_n \nearrow \infty$ so that $\Psi(s_n) \ge 2^n \Psi\left(\frac{s_n}{2}\right)$ and $\frac{1}{\Psi(s_n)} \le \mu\left(E_n \cap B_n\right)$ (if necessary, pass to a subsequence). Using lemma 2.1 again, there is an $\varepsilon_0 > 0$, a subsequence (n_k) of the positive integers and a sequence (A_k) of pairwise disjoint measurable sets so that $A_k \subset E_{n_k} \cap B_{n_k}$, $\|\chi_{A_k} f_{n_k}\|_{\Phi} > \varepsilon_0$ for all positive integers k and $\mu(A_k) = \frac{1}{\Psi(s_n)}$. For each k let $g_k = s_{n_k} \chi_{A_k}$ and notice that

$$\left| \int_{\Omega} g_k f_{n_k} d\mu \right| = |c_{n_k}| \cdot s_{n_k} \cdot \mu \left(A_k \right) = |c_{n_k}| \cdot \mu \left(A_k \right) \cdot \Psi^{-1} \left(\frac{1}{\mu \left(A_k \right)} \right) = |c_{n_k}| \cdot \|\chi_{A_k}\|_{\Phi} = \|\chi_{A_k} f_{n_k}\|_{\Phi} > \varepsilon_0$$

Now let $g = \sum_{k=1}^{\infty} g_k$. Then

$$\int_{\Omega} \Psi\left(\frac{g}{2}\right) d\mu = \sum_{k=1}^{\infty} \Psi\left(\frac{s_{n_k}}{2}\right) \mu\left(A_k\right) \le \sum_{k=1}^{\infty} \frac{1}{2^{n_k}} \Psi\left(s_{n_k}\right) \frac{1}{\Psi\left(s_{n_k}\right)} \le 1$$

and so $g \in L^{\Psi}$ with $\|g\|_{(\Psi)} \leq 2$. Hence $g_k \in L^{\Psi}$ with $\|g_k\|_{(\Psi)} \leq 2$. For a fixed $f \in E^{\Phi}$, Hölder's Inequality yields

$$\left|\int fg_k d\mu\right| = \left|\int \chi_{A_k} fg_k d\mu\right| \le \|\chi_{A_k} f\|_{\Phi} \cdot \|g_k\|_{(\Psi)} \le 2 \|\chi_{A_k} f\|_{\Phi}$$

But since (A_k) are pairwise disjoint and μ is finite we have that $\mu(A_k) \to 0$ and as $f \in E^{\Phi}$, f has absolutely continuous norm. Thus $\|\chi_{A_k}f\|_{\Phi} \to 0$. So $\int fg_k d\mu \to 0$. Hence (g_k) is weak* null. By lemma 2.2 there is a subsequence (k_j) of the positive integers so that for each i we have $\sum_{j\neq i} \left| \int g_{k_j} f_{n_{k_i}} d\mu \right| < \frac{\varepsilon_0}{2}$.

Let $h = \sum_{j=1}^{\infty} g_{k_j}$. Then $\|h\|_{(\Psi)} \leq 2$ and so $h \in L^{\Psi}$. Since (f_n) is weakly null, we must have $\int h f_{n_{k_m}} d\mu \to 0$ as $m \to \infty$. But for each positive integer m we have

$$\begin{split} \left| \int_{\Omega} h f_{n_{k_m}} d\mu \right| &= \left| \int_{\Omega} \left(\sum_{j=1}^{\infty} g_{k_j} \right) f_{n_{k_m}} d\mu \right| \\ &\geq \left| \int_{\Omega} g_{n_{k_m}} f_{n_{k_m}} d\mu \right| - \sum_{j \neq m} \left| \int_{\Omega} g_{n_{k_j}} f_{n_{k_m}} d\mu \right| \\ &> \frac{\varepsilon_0}{2}, \end{split}$$

which is a contradiction.

For the other direction suppose that $\Phi \in \nabla_2$. Since (Ω, Σ, μ) is non-atomic, choose a sequence of measurable sets (A_n) with $\mu(A_n) = \frac{1}{n}$. Then the sequence $(\Phi^{-1}(n)\chi_{A_n}) \subset E^{\Phi}$ is a weakly null sequence that does not have equi-absolutely continuous norms:

First notice that $\int_{\Omega} \Phi\left(\Phi^{-1}(n)\chi_{A_n}\right) d\mu = 1$ and so the Luxemburg norm $\left\|\Phi^{-1}(n)\chi_{A_n}\right\|_{(\Phi)} = 1$. Hence $\left(\Phi^{-1}(n)\chi_{A_n}\right)$ does not have equi-absolutely continuous norms. Now since $\Phi \in \nabla_2$ we have that the complement Ψ of Φ satisfies the Δ_2 condition and so if $f \in \left(E^{\Phi}\right)^* = L^{\Psi}$ we obtain

$$\left| \int_{\Omega} f \Phi^{-1}(n) \chi_{A_n} d\mu \right| = \left| \int_{\Omega} f \chi_{A_n} \Phi^{-1}(n) \chi_{A_n} d\mu \right|$$

$$\leq \left\| f \chi_{A_n} \right\|_{\Psi} \cdot \left\| \Phi^{-1}(n) \chi_{A_n} \right\|_{(\Phi)}$$
(by Hölder's inequality)
$$= \left\| f \chi_{A_n} \right\|_{\Psi} \longrightarrow 0 \text{ as } n \to \infty \text{ since } f \text{ has continuous norm}$$

Hence $(\Phi^{-1}(n)\chi_{A_n})$ is weakly null in E^{Φ} .

3 A characterization of the Δ_2 condition

We first make an observation that is useful throughout this discourse:

Proposition 3.1 Every disjointly supported sequence in an Orlicz space is a monotonic basic sequence.

Proof: If (f_k) is such a sequence in L^{Φ} then for any sequence of scalars (a_k) and any positive integers m > n we have

$$\sum_{k=1}^{n} a_k f_k \bigg\|_{\Phi} = \bigg\| \sum_{k=1}^{n} |a_k f_k| \bigg\|_{\Phi}$$
$$\leq \bigg\| \sum_{k=1}^{m} |a_k f_k| \bigg\|_{\Phi}$$
$$= \bigg\| \sum_{k=1}^{m} a_k f_k \bigg\|_{\Phi}$$

and so (f_k) is as claimed.

Theorem 3.2 Let Φ be an *N*-function and let $f \in L^{\Phi}$. Then $f \notin E^{\Phi}$ if and only if there is a sequence of disjoint measurable sets $(A_n)_{n=1}^{\infty}$ so that $(\chi_{A_n} f)_{n=1}^{\infty} = (f_n)_{n=1}^{\infty}$ is in E^{Φ} and (f_n) is equivalent to the unit vector basis of c_0 .

Proof: Notice first that if $h \in L^{\Phi}$ with $||h||_{\Phi} > \varepsilon$ then there is a measurable set A over which h is bounded and such that $||h\chi_A||_{\Phi} > \varepsilon$. To see this let $h_n = h\chi_{[|h| \le n]}$. Then $|h_n| \nearrow |h|$ a.s. Hence if $g \in \tilde{L}^{\Psi}$ with $\Psi(g) \le 1$ and $\int_{\Omega} |gh| d\mu > \varepsilon$ we have that $|gh_n| \nearrow |gh|$ and so $\int_{\Omega} |gh_n| d\mu \nearrow \int_{\Omega} |gh| d\mu$. Thus for sufficiently large n we have that $||h_n||_{\Phi} \ge \int_{\Omega} |gh_n| d\mu > \varepsilon$.

Now let $f \in L^{\Phi} \setminus E^{\Phi}$. Then f does not have absolutely continuous norm and so we can find a sequence of disjoint measurable sets (E_n) and an $\varepsilon_0 > 0$ so that for each n we have $\|\chi_{E_n}f\|_{\Phi} > \varepsilon_0$. Now choose measurable subsets $A_n \subset E_n$ so that f is bounded on A_n and $\|\chi_{A_n}f\|_{\Phi} > \varepsilon_0$. Let $f_n = \chi_{A_n}f$. Then by proposition 3.1 (f_n) is a monotonic basic sequence in E^{Φ} with $\inf_n \|f_n\|_{\Phi} \ge \varepsilon_0$. Furthermore for every $g \in L^{\Psi}$ we have

$$\begin{split} \sum_{n=1}^{\infty} \left| \int_{\Omega} gf_n \, d\mu \right| &\leq \sum_{n=1}^{\infty} \int_{\Omega} |gf_n| \, d\mu \\ &= \int_{\Omega} |g| \sum_{n=1}^{\infty} |f_n| \, d\mu \\ &\leq \int_{\Omega} |g| \cdot |f| \, d\mu \leq \|g\|_{(\Psi)} \cdot \|f\|_{\Phi} < \infty \end{split}$$

Hence $\sum f_n$ is weakly unconditionally Cauchy. Hence by Bessaga–Pelczynski [2], (f_n) is equivalent to the unit vector basis of c_0 .

Conversely if $f \in L^{\Phi}$ and there is a sequence of disjoint measurable sets (A_n) so that $(\chi_{A_n} f)$ is equivalent to c_0 's unit vector basis then $\inf_n \|\chi_{A_n} f\|_{\Phi} = \varepsilon_0 > 0$. Since the sets A_n are disjoint, we have that $\mu(A_n) \to 0$ as $n \to \infty$ and so f does not have absolutely continuous norm. Hence $f \notin E^{\Phi}$.

We have the following immediate corollary:

Corollary 3.3 $\Phi \notin \Delta_2$ if and only if E^{Φ} contains a copy of c_0 .

Proof: If $\Phi \notin \Delta_2$ then there is a function $f \in L^{\Phi} \setminus E^{\Phi}$. Hence by theorem 3.2 there is a sequence of disjoint measurable sets (A_n) so that $(\chi_{A_n} f) = (f_n) \subset E^{\Phi}$ and (f_n) is equivalent to the unit vector basis of c_0 . On the other hand, if $\Phi \in \Delta_2$ then $L^{\Phi} = E^{\Phi}$ contains no copies of c_0 (see [8]).

Corollary 3.4 If $\Phi \notin \Delta_2$ then there is a weakly null sequence $(f_n) \subset E^{\Phi}$ that fails to have equi-absolutely continuous norms.

Proof: This is immediate from theorem 3.2.

As applications of corollary 3.3, other Banach space characterizations of Δ_2 condition are found in the following corollary:

Corollary 3.5 The following statements are equivalent.

- i) $\Phi \in \Delta_2$
- ii) $E^{\Phi}(\mu)$ is weakly sequentially complete.
- iii) $E^{\Phi}(\mu)$ has the Radon-Nikodym Property.
- iv) $E^{\Phi}(\mu)$ is a dual Banach space.

Proof: i) \Rightarrow ii). If $\Phi \in \Delta_2$, then $E^{\Phi}(\mu) = L^{\Phi}(\mu)$ is weakly sequentially complete.

ii) \Rightarrow i). If $E^{\Phi}(\mu)$ is weakly sequentially complete, then every closed subspace of $E^{\Phi}(\mu)$ is weakly sequentially complete. Consequently, c_0 cannot be isomorphic to a closed subspace of $E^{\Phi}(\mu)$ and so by corollary 3.3, $\Phi \in \Delta_2$.

i) \Rightarrow iii). If $\Phi \in \Delta_2$, then $E^{\Phi}(\mu) = L^{\Phi}(\mu)$ has the Radon-Nikodym Property because $L^{\Phi}(\mu)$ is a separable dual space (see [4, Theorem III.3.1]).

iii) \Rightarrow i). Suppose $E^{\Phi}(\mu)$ has the Radon-Nikodym Property. Hence, by [4, Theorem III.3.2], every closed subspace of $E^{\Phi}(\mu)$ has the Radon-Nikodym Property. Since c_0 lacks this property ([4, Example III.1.1]), c_0 cannot be a closed subspace of $E^{\Phi}(\mu)$, which means by corollary 3.3, that $\Phi \in \Delta_2$.

i) \Rightarrow iv). If $\Phi \in \Delta_2$, then $E^{\Phi}(\mu) = L^{\Phi}(\mu)$ is well known to be a dual Banach space.

iv) \Rightarrow i). Since $E^{\Phi}(\mu)$ is separable Banach space ([7, Theorem 3.5.1]), then if $E^{\Phi}(\mu)$ is a separable dual Banach space, by [4, Theorem III.3.1], $E^{\Phi}(\mu)$ has the Radon-Nikodym Property. In this form we have reduced our problem to the case iii) \Rightarrow i).

4 Some closing remarks

In [1] J. Alexopoulos has shown that if a bounded set with equi-absolutely continuous norms in any Orlicz space, is relatively weakly compact. Furthermore if $\Phi \in \Delta_2$ and its complement Ψ satisfies $\lim_{t\to\infty} \frac{\Psi(ct)}{\Psi(t)} = \infty$ for some c > 0 then a bounded set $K \subset L_{\Phi}$ is relatively weakly compact if and only if K has equi-absolutely continuous norms.

Making an effort to generalize this result, one can immediately ask several relevant questions:

1. One may ask whether given a $\Phi \in \Delta_2 \setminus \nabla_2$ with complementary function Ψ satisfying $\liminf_{t\to\infty} \frac{\Psi(ct)}{\Psi(t)} < \infty$ for all c > 0, it is possible to find an N-function F equivalent to Φ so that the complement G of F satisfies $\lim_{t\to\infty} \frac{G(ct)}{G(t)} = \infty$ for some c > 0.

The answer to this question is negative for if there is a $\Phi \in \Delta_2 \setminus \nabla_2$ with its complement Ψ satisfying $\liminf_{t\to\infty} \frac{\Psi(ct)}{\Psi(t)} < \infty$ for all c > 0 then if F has complement G and F is equivalent to Φ , then G is equivalent to Ψ and as such, there are positive constants k_1 and k_2 so that $\Psi(k_1t) \leq G(t) \leq \Psi(k_2t)$ for large values of t. Consequently for any c > 0 we have

$$\lim \inf_{t \to \infty} \frac{G(ct)}{G(t)} \le \lim \inf_{t \to \infty} \frac{\Psi(k_2 ct)}{\Psi(k_1 t)} = \lim \inf_{s \to \infty} \frac{\Psi\left(\frac{k_2 c}{k_1} s\right)}{\Psi(s)} < \infty$$

2. Is weak compactness in E^{Φ} for $\Phi \notin \nabla_2$ equivalent to equi-absolute continuity of norms?

One might think that by some density argument, theorem 2.3 holds for every weakly null sequence in such an E^{Φ} . Nonetheless the answer to this question is negative for if in addition to $\Phi \notin \nabla_2$ we choose $\Phi \notin \Delta_2$ then corollary 3.4 guarantees the existence of a weakly null sequence in E^{Φ} that fails to have equi-absolutely continuous norms.

3. Related to corollary 3.3, we may ask wether c_0 itself maybe isomorphic to $E^{\Phi}(\mu)$. The answer to this question is NO, at least when μ is the Lebesgue measure on [0, 1]; since if $E^{\Phi}(\mu)$ is isomorphic to c_0 , then $L^{\Psi}(\mu)$ is isomorphic to ℓ_1 and so $L^{\Psi}(\mu)$ is separable. Therefore $\Psi \in \Delta_2$. This implies, by a theorem in [6], that $L^{\Psi}(\mu)$ lacks the Dunford Pettis Property contrary to the isomorphism between $L^{\Psi}(\mu)$ and ℓ_1 .

The following questions relating to the generalization of the theorem mentioned above, remain unresolved:

- 1. Does the complement Ψ of every $\Phi \in \Delta_2 \setminus \nabla_2$ satisfy $\lim_{t\to\infty} \frac{\Psi(ct)}{\Psi(t)} = \infty$ for some c > 0?
- 2. Can the additional hypothesis of $\Phi \in \Delta_2$ be utilized to harvest the conclusion of theorem 2.3 for an arbitrary weakly null sequence $(f_n) \subset L^{\Phi}$?

References

- J. Alexopoulos, De La Vallée Poussin's theorem and weakly compact sets in Orlicz spaces, QM (1994), no. 17, 231–248.
- [2] C. Bessaga and A. Pelczynski, On bases and unconditional convergence of series in Banach spaces, Studia Mathematica (1958), no. 17, 151–164.
- [3] J. Diestel, Sequences and series in Banach spaces, Springer Verlag, 1984.
- [4] J. Diestel and J. J. Uhl, Vector measures, Math. Surveys, vol. 15, Amer. Math. Soc., 1977.
- [5] M. A. Krasnoselskii and Ya. B. Rutickii, Convex functions and Orlicz spaces, Noorhoff Ltd., Groningen, 1961.
- [6] D. H. Leung, On the weak Dunford-Pettis property, Arch. Math (1989), no. 52, 363-364.
- [7] M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, Marcel Dekker, 1991.
- [8] B. Turett, Rotundity in Orlicz spaces, Indag. Math., 38 (1976), no. 38, 462–469.

John Alexopoulos, jalexopoulos@stark.kent.edu Department of Mathematics, The Banach Center Kent State University, Stark Campus 6000 Frank Avenue N.W. Canton, OH 44720 U.S.A. Diomedes Bárcenas, barcenas@ula.ve Departamento de Matemática Facultad de Ciencias Universidad de Los Andes Mérida 5101 VENEZUELA

Ventura Echandía, vechandi@euler.ciens.ucv.ve Escuela de Matemática Facultad de Ciencias Universidad Central de Venezuela Los Chaguaramos 1020-A Caracas VENEZUELA